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Abstract—Current best practice recommendations for fuzzing
research rely on the use of standardized evaluation frameworks.
While many aspects of these frameworks have been scrutinized,
the coverage collection and evaluation remain blind spots. We
present two examples of discrepancies in coverage reported by
FuzzBench, highlighting a gap in our understanding of the
evaluation frameworks we depend on. In this work, we close
this gap for FuzzBench by systematically examining its coverage
analysis. We find that there are issues in every stage of the analysis
pipeline that can potentially influence reported coverage.

We propose a thorough experimental design to assess the
impact of each individual flaw, and their combined influence on
the evaluation results. We will contextualize our results within
the existing literature and discuss implications for our trust in
previous fuzzing evaluations. With this work, we will improve
confidence in the reliabilty of standardized fuzzing benchmarks
and inform future research on how to improve their evaluation.

We will open-source our code after completing all experiments.

I. INTRODUCTION

Fuzzing has become a highly effective technique for dis-
covering software bugs and vulnerabilities. It continues to be
an active research area for both academia and industry and,
unsurprising given its success, has also been widely adopted
by practitioners. Given the significant research activity in the
field, there are hundreds of different fuzzing techniques [11].
To ensure a fair and rigorous comparison between all these
competing fuzzers, researchers have long identified the need
for standardized evaluation approaches and benchmarks [8].

This has led to the development of coverage-based bench-
marks, like FuzzBench [12], which are now recommended
for rigorous fuzzer evaluation [16]. FuzzBench itself provides
infrastructure for comparing fuzzers’ performance based on the
code coverage that the fuzzers achieve on a fixed set of real-
world programs as its primary measure of fuzzer effectiveness.

While standardized benchmarks are a significant step for-
ward and in the right direction toward rigorous evaluation,
these benchmarks are only as good as the underlying, assumed
premise that the measurements are accurate and reliable. Pre-
vious work has discussed and investigated various aspects of
benchmarking, like the choice of benchmarks [18], metrics [1],
or statistical tests [8, 17], and issues with the underlying data
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220 int vdbePmaReaderIncrMergeInit(..) {
function counter = 1533
vdbeMergeEngineInit(..);
counter a = 1534
234 if( rc==SQLITE_OK ){
counter b = 1535

2229 rc =

branch taken: b = 1535 times
branch not taken: a — b = —1 times

2256 }

280 }

Listing 1: Simplified race condition example from SQLite. The
function counter and counter a were not incremented correctly
due to a data race. The calculation a — b then underflows and
evaluates to 264 — 1.

(e.g., instrumentation flaws resulting in fuzzers not recording
all coverage [10]), but the output of the evaluation tools is,
generally, simply trusted and assumed to be correct.

In this paper, we challenge that assumption. On the basis of
the FuzzBench evaluation pipeline, we investigate and aim to
answer the following research questions:

RQ 1: Which sources of code coverage inconsistencies exist
in the FuzzBench benchmark pipeline?
RQ2:

RQ3:

How large is the impact of each issue on the results?

Is the impact sufficient to affect how fuzzers should
have been ranked in past evaluations? Could they call
into question comparisons of prior work?

A. Motivating Examples

There are many reasons why code coverage inconsistencies
can occur. Here, we describe two motivating examples we
encountered during previous FuzzBench experiments: a race
condition in the coverage collection for SQLite and inaccurate
coverage reports due to residual state in HarfBuzz.

a) SQLite: An examination of a SQLite coverage re-
port revealed an anomaly: we observed 1lvm-cov reporting
18.4E =~ 254 executions of a single branch, which is evidently
incorrect. Listing 1 shows an abbreviated version of the code.
This issue occurred because multiple concurrent executions of
the affected function raced to update the same instrumentation
counters, occasionally missing an increment. This can be prob-
lematic because LLVM’s profiling instrumentation computes
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the execution count of some branches based on the counters
of others [15]. For example, it will compute how often the
else branch of an if was taken by subtracting the number
of times the condition was true from the number of times the
condition was evaluated. An incorrect counter value due to a
race condition caused this calculation to underflow, resulting
in a wildly incorrect execution count. Both of these two
motivating examples raise the question of how prevalent such
issues are generally and they highlight the need for thorough
evaluations of FuzzBench and other tooling that we rely on,
but, so far, simply assumed to be correct.

b) HarfBuzz: For HarfBuzz, we observed an instance
where we were unable to attribute the coverage of a specific
branch to any single test case in our corpus. When we evalu-
ated test cases individually, coverage was different from when
we collected coverage for the entire test case corpus in the
same process (which is how FuzzBench evaluates coverage).
Our in-depth analysis revealed that this is due to residual
state inside the target itself. Specifically, to test handling
of low-memory conditions, HarfBuzz’s testing setup uses an
internal pseudorandom number generator (PRNG) to introduce
allocation failures at random-but-deterministic locations. Each
allocation advances the PRNG state and thus affects whether
the next allocation triggers an artificial allocation failure.
In essence, the sequence and order of test cases that were
previously executed decides whether any specific test case (or
the fuzzing campaign as a whole) can cover the corresponding
error handling code.

B. Contributions

In this paper, we perform the first systematic, in-depth
analysis of the FuzzBench coverage measurement pipeline, to
identify and categorize all such sources of inconsistencies. We
identify several stages where errors can be introduced:

1) during snapshotting, due to incorrect corpus selection and
failure to capture state in the target;

2) within the profiling instrumentation, through violating
assumptions that cause miscomputations;

3) in the translation from raw counters to code coverage, due
to mismatched function hashes, and finally;

4) in the way FuzzBench reports coverage, by summarizing
template instantiations and miscounting branches.

Based on our analysis, we propose a set of new experiments
to measure the impact of the discovered issues. We design
our experiments specifically to investigate how much current
FuzzBench evaluations may be affected and to inform future
research on how to build more reliable evaluation frameworks.

In summary, we make the following contributions:

. We perform a qualitative analysis and identify multiple,
specific problematic points in the FuzzBench coverage
pipeline that can introduce incorrect coverage information
and lead to wrong results.

« We introduce new experimental methodology to quantify
the impact of the identified issues, including incorrect
corpus selection, statefulness, instrumentation errors, and
mismatches in reporting conventions.

. We propose a plan to thoroughly evaluate the impact of
applying the necessary fixes, providing a clear path to-
wards more accurate and reproducible fuzzer evaluations.

We will make our code and data publicly available at
softsec.link/fz26.cov.

II. BACKGROUND
A. Existing Benchmarks

The need for standardized evaluation approaches for fuzzers
has primarily been addressed through two categories of bench-
marks, those measuring bug discovery and those measuring
code coverage. Initial efforts to create bug-based benchmarks
focused on synthetic bugs, like LAVA-M [3]. Later ones, like
Magma [7], reintroduced real bugs into newer versions of the
previously buggy software to recreate the vulnerabilities. More
recently, Zhang et al. [24] proposed a method to automatically
undo security fixes in code, creating the REVBUGBENCH
benchmark. Additionally, the vulnerable DARPA Cyber Grand
Challenge (CGC) programs were ported to Linux [4] and
Guido proposed to use them as a benchmark [6].

In parallel, researchers introduced coverage-based bench-
marks, starting with the Fuzzer Test Suite [5], followed by
FuzzBench [12] and UNIFUZZ [9]. Building on FuzzBench,
Ounjai et al. introduced GreenBench, which tries to reduce the
required power by shortening evaluation timeouts [14].

More recent work aims to make benchmark construction
more principled. Wolff et al. [18] discuss the biases that
benchmark properties can introduce to fuzzer evaluation re-
sults and find that properties, such as the initial seed set and
the execution time of individual benchmark programs, have a
significant impact on the evaluation’s outcome. To mitigate the
impact, they propose varying these properties to obtain a more
comprehensive view of the performance of the benchmarked
fuzzers. Similarly, to address the biases of existing benchmark
suites, Miao et al. [13] proposed a benchmark that generates
programs with diverse features, aiming to avoid bias toward
shared code characteristics among the benchmark programs.

B. On the State of Fuzzing Evaluations

In 2018, Klees et al. [8] studied then-recent fuzzing publica-
tions and discovered multiple common methodological issues
in their evaluations. They transformed the identified issues into
a set of recommendations for future evaluations. These recom-
mendations include the choice of an appropriate baseline, the
use of a diverse set of benchmark programs, and evaluation on
a meaningful performance metric across multiple, sufficiently
long trials to account for the inherent randomness of fuzzing.
Unfortunately, a more recent survey by Schloegel et al. [17]
found that these recommendations were often not followed.
Specifically, they observed that almost a fourth of the surveyed
papers failed to compare against an appropriate baseline or
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state-of-the-art fuzzer, and that few papers provide reliable
measures of uncertainty and statistical significance to assess
the robustness of their results. As a result, they further propose
a new set of concrete guidelines, including the use of well-
established evaluation benchmarks, with FuzzBench listed as
the only example of such a benchmark [16, guideline A 2.1].

C. Do Utilized Metrics Support the Claims?

Bohme, Szekeres, and Metzman [1] study the correlation
and ranking agreement between coverage-based and bug-
based benchmarks. They find that while both metrics are
strongly correlated, they do not strongly agree on the ranking
of different fuzzers. Thus, they conclude that both metrics
are valuable measures of fuzzer effectiveness. Importantly,
they argue for using “classical” coverage metrics over fuzzer-
specific measures. FuzzBench already uses the default profiling
instrumentation provided by Clang/LLVM to obtain coverage
information. This makes it a natural choice for researchers
who want to evaluate following these recommendations, which
makes it important to investigate in detail.

D. FuzzBench Internals

Figure 1 shows how FuzzBench collects coverage data.
The fuzzer ingests seeds, generates test cases from them, and
executes its instrumented copy of the target (targety,,,) on
these new inputs. Depending on its internal feedback metrics
(e.g., new entries in the coverage map obtained from targety,,,),
the fuzzer retains some of these test cases and stores them in a
corpus directory on disk, and it discards others. Some fuzzers,
like AFL++ and LibAFL, also store additional metadata. In
regular intervals, FuzzBench creates so-called “snapshots” of
the fuzzing progress. To do so, it collects all files from the
corpus directory that were created or modified since the last
snapshot was taken. Before the fuzzer is started, FuzzBench
also creates an initial snapshot (snapshot 0), which contains
only the initial seeds. Each snapshot can then be evaluated
independently of the fuzzer using a version of the target com-
piled with Clang’s frontend coverage profiling instrumentation
(target.,,). While fuzzer-specific instrumentation often has to
balance performance and detail, this profiling instrumentation
is designed to measure exact execution counts for every code
region and branch.

To evaluate the coverage achieved by a fuzzer, FuzzBench
extracts the snapshot archives, and executes target.,, on the
files contained therein. The same build of target.,, is used
for all evaluated fuzzers to make the results comparable. The
coverage binary writes the resulting counter values alongside
some metadata to disk in a simple binary format (profraw).
FuzzBench then takes the individual profraw files, each
containing coverage information for one snapshot, and merges
them using 1lvm-profdata to obtain the cumulative coverage
information up to that point in time. Using 11vm-cov and the
target.,, binary, FuzzBench produces a JSON summary of the
coverage achieved at each snapshot, from which it ultimately
generates coverage-over-time reports.
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Figure 1: Overview of FuzzBench’s coverage collection.

III. SouRcCES OF INACCURACIES

In Section I-A, we gave two motivating examples of inaccu-
racies that we encountered while evaluating coverage reported
by FuzzBench. We therefore want to systematically investigate
all components of the coverage collection pipeline and look
for causes of potential inconsistencies. The fuzzer and the
benchmark program themselves are not the primary subjects of
our evaluation because they can, in principle, be exchanged for
any fuzzer/benchmark combination supported by the frame-
work. Even though targets can behave non-deterministically,
either of their own accord or due to interactions with the
environment (e.g., system load or timeouts), this behavior is
target-specific and cannot be comprehensively addressed from
the benchmark suite’s point of view. Therefore, we do not
analyze any particular set of fuzzers or benchmarks but instead
focus on the common parts and components of the FuzzBench
infrastructure, as shown in Figure 1.



A. @ Snapshotting

Coverage evaluations in FuzzBench start with snapshotting.
In an ideal scenario, the snapshots capture the exact state of
the fuzzing campaign at this time. However, upon closer in-
spection, we see that this stage can introduce several deviations
from the original fuzzing campaign.

a) Corpus Selection: To realistically evaluate the cov-
erage achieved by a fuzzer, target.,, should be executed on
exactly the same inputs as target,,,. We know that this is not
the case, primarily because fuzzers do not store all generated
test cases on disk for performance reasons.! Additionally,
FuzzBench simply collects all files within its designated cor-
pus folder, and some fuzzers store additional metadata and
state files in this folder. For example, LibAFL-based fuzzers
create lock files and JSON metadata, while those based on
AFL++ store various metadata files in binary, CSV, and other
plain text formats. In contrast, other fuzzers like honggfuzz
and libFuzzer write additional files only to directories that
will not be captured by the snapshotting, such as the current
working directory or /tmp. This means that, for some fuzzers,
target., is executed on files that were never actually processed
by targets,,,, a problem that has been reported before in
FuzzBench issue #1836 but remains unfixed.

b) Statefulness: Another issue, which we term residual
state, may arise if the target carries over state between multiple
executions of LLVMFuzzerTestOneInput. We have discussed
an extreme example of such statefulness for HarfBuzz in
Section I-A. But even without such explicit retention of state,
there is almost always some amount of state that persists,
including in subtle ways, such as in heap allocatior state after
memory has been allocated or freed. Residual state might also
differ depending on the execution order of the test cases or on
whether and when state resets occur due to target restarts.

First, in FuzzBench, differences in residual state occur
because it disregards the order in which the test cases were
originally executed. The customized libFuzzer runtime that
executes the test cases sorts them according to their size
because it is used in “corpus merging” mode, where it prefers
smaller test cases over larger ones that produce the same
coverage. For corpus merging, this is sensible. However, it
will almost always lead to an execution order different from
the one in which the test cases were originally executed by the
fuzzer, which means it results in different internal states.

Second, the evaluation process has no recollection of restarts
that happened in targety,,, and has to insert artificial restarts at
snapshot boundaries, which were likely not present during the
original fuzzing campaign. In case of in-process or persistent
mode forkserver fuzzers, targety,,, will execute multiple test
cases before being restarted due to crashes, timeouts, or
fuzzer specific criteria. Between individual restarts, targets,,,
accumulates internal state, which affects coverage, and is reset
whenever the target is restarted. These target restarts may have
an impact on coverage that FuzzBench cannot reconstruct from

! Arguably, this is also a function of how good the fuzzer is at identifying

“interesting” test cases. Lipp et al. [10] investigate the impact of this pre-
filtering by the fuzzer on code coverage metrics.

the test case files on disk alone. For forkserver-based fuzzers
that forcefully reset the target’s state after each test case (e.g.,
some snapshot-based fuzzers), the same is true: While there
was no opportunity for residual state in the original campaign,
the coverage evaluation uses an in-process version of the target
that retains residual state across executions.

Finally, because fuzzers do not usually record all test cases
passed to targetg,,,, it is in general infeasible for FuzzBench
to attempt to reconstruct the residual state in target.,, exactly.

B. @ Profiling Instrumentation

The next stage in the coverage evaluation pipeline runs
the test cases through target.,,. While fuzzer instrumentations
typically suffer from loss of accuracy, for example due to small
counter bit widths or collisions in the coverage map, LLVM’s
profiling instrumentation is unaffected by such issues. It is
used in situations that have a higher tolerance for performance
degradation and, thus, it trades execution speed for additional
precision. Prior work [20, 21, 22, 23] scrutinized profiling
instrumentations generally. Instead of replicating them, we
focus on issues arising specifically in fuzzing evaluations.

a) Miscomputations: To reduce both the performance
overhead and the size of the generated profiles, the profiling
instrumentation attempts to elide some counters by replacing
them with mathematical expressions of other counter values.
For example, it assumes that it can derive how often the
else branch of an if statement was taken by subtracting
the number of times the then branch was executed from
the counter of how often the condition was evaluated. Under
typical profiling workloads, these assumptions are perfectly
sound: In a well-behaved program with well-behaved inputs,
there is generally no way for control flow to leave the condition
and not enter either of the then or else branches. However,
there are no such guarantees for typical inputs and targets of
fuzzing campaigns. Quite the contrary, fuzzers aim to uncover
bugs in programs by generating new, pathological inputs and
making the programs fail. In turn, we regularly violate these
assumptions in coverage evaluations. For example, test cases
that crashed the target or that were interrupted by a signal
(e.g., due to exeeding the time limit for an individual input)
also contribute coverage. This can then lead to branches
being erroneously counted as covered. Additionally, there exist
known issues for example when interacting with functions that
can return multiple times (e.g. the setjmp and longjmp family
of functions), which the instrumentation does not expect.2 It
is also known (and documented) that the default coverage
instrumentation is vulnerable to races when used in multi-
threaded programs [2]. The documentation explicitly warns
that “the default [counter update mode] is single, which
uses non-atomic increments. The counters can be inaccurate
under thread contention.” As we have shown (cf. Section I-A),
this can lead to situations where branches are marked as
covered, even though they were never executed. Users have
also observed such miscomputations in OSS-Fuzz.3

2For example, see LLVM issues #50119, #36480, #36473, and #36429.
3For example, see OSS-Fuzz issue #13483.
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C. ® Retention of Counters

By default, LLVM’s profiling instrumentation only writes
the collected coverage data to disk when the program exists
cleanly. As we established, this is not a sound assumption for
fuzzing. To address this, FuzzBench uses a patched libFuzzer
runtime that saves coverage data on crashes and timeouts.
In contrast, other fuzzing frameworks, like OSS-Fuzz, use
LLVM’s default runtime for coverage collection and thus miss
all coverage that has been recorded in a run prior to a crash.*

To avoid reexecuting all previous test cases for later snap-
shots, FuzzBench writes the coverage data of individual
snapshots to disk and later merges the raw counters. This
merging step is a simple addition of the raw counters from the
profraw files and does not introduce further inconsistencies
in practice. While the 64-bit wide counters could theoretically
overflow, this would require a single code region to be executed
264 times, which we consider impractical.

D. ® From Raw Counters to Code Coverage

The transformation from the raw counts to useful coverage
information is based on the coverage mappings embedded
into the coverage evaluation binary at compile time. These
mappings include both the information which counter maps
to which section of the source code, and the expressions we
examined in Section III-B.

When generating coverage reports from the raw counts,
LLVM attempts to ensure that the profile actually matches
the coverage mapping embedded in the binary. Because there
is no easy way to permanently link both (short of embedding
the binary in the profile, which would be prohibitively space-
inefficient), functions are instead assigned a simple structural
hash at compile time. During evaluation, 11vm-cov compares
the hashes in both files and discards any coverage data where
the hashes do not match. We have observed cases where
function hashes in the profile do not match those in the binary.
In such cases, 11vm-cov (and therefore also FuzzBench) is ef-
fectively blind to all coverage achieved by fuzzers in functions
with mismatched hashes, and underreport their coverage.

There exists also (at least) one additional bug in which
Clang generates an incomplete mapping between code and
counters. At some point in the compilation pipeline, nested
macro expansions inside of while loops lose their associated
expansion regions. While the coverage data can be accurately
computed from the expressions and remaining mappings, it is
not included in the coverage summary and reports.

E. ® From Coverage Data to FuzzBench Reports

Finally, FuzzBench ingests and interprets the data produced
by 1lvm-cov to create a concise report tailored to fuzzing
evaluations. However, this stage suffers from mismatched
definitions and misunderstandings of the coverage output.

“For example, see OSS-Fuzz issue #13791.
5See also FuzzBench issue #1930 and LLVM issue #72786.
See LLVM issue #176953.

a) Summarization: LLVM’s coverage tooling summa-
rizes the coverage of multiple function instantiations (e.g.,
from C++ templates) as the maximum number of executed
and total branches across all instantiations. However, it obtains
those values separately, that is, possibly from different instan-
tiations.” In the context of fuzzing, this means that 1lvm-cov
will underreport the number of covered branches and the
total branch count. A fuzzer that covers all branches in all
template instantiations is then considered equivalent to another
that covers only the single largest instantiation. The HarfBuzz
benchmark is an example where this summarization leads to
a much lower branch count than counting each instantiation
individually, as the project makes extensive use of templates.
Since a function implementation may contain bugs in only a
subset of its instantiations (e.g., depending on the template
parameters), fuzzing all instantiations and achieving coverage
in them is clearly more valuable than doing so for only one.

b) Unique Branches: FuzzBench further attempts to
highlight differences between fuzzers by analyzing the cover-
age reports for branches that are uniquely covered by any of the
fuzzers. For this analysis, it collects all covered branches for
all functions from the report and calculates the size of the pair-
wise set differences between the individual fuzzers. However,
FuzzBench in this case only uses a different definition of a
branch. While LLVM counts the true and false cases of a
conditional as two individual branches, FuzzBench considers
the combination of the two as a single branch. Therefore, it
fails to capture the difference in coverage between a fuzzer
that only ever takes the true branch to another that only
ever takes the false path. Notably, while the total count of
covered branches used for coverage-over-time plots uses the
summarization of all instantiation groups, the unique branch
counting is done on each instantiation individually.

IV. ExXPERIMENT DESIGN

Our qualitative analysis (cf. Section III) has shown that
there are various places in the FuzzBench coverage evaluation
pipeline where inaccuracies in the reported coverage can arise.
For future evaluations, these methodological issues should be
addressed regardless of their ultimate impact. However, it is
currently unclear how much these issues actually affect the
results of fuzzing evaluations. We aim to quantify their impact
(RQ2) and determine whether they might affect fuzzing
evaluations of prior work (RQ 3). In the following, we discuss
our proposed evaluation approach and preliminary results.

A. General Setup

Following best practices [16], we obtain fuzzing results from
FuzzBench by running each fuzzer for 24 hours on each of the
benchmarks. We repeat this 10 times each to account for the
randomness inherent to the fuzzing process.

For every trial, we evaluate the coverage in various scenarios
(Sections IV-D to IV-]) to isolate the impact of each issue we
identified in Section III. For our evaluation, we will repeat
each experiment 10 times to control for non-determinism.

7We are not aware of the specific reasoning behind this design choice.
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B. Target Selection

We perform our evaluation on AFL++, LibAFL, and lib-
Fuzzer, which are the three fuzzers that most recent fuzzers
are based on [11], as well as honggfuzz, which is frequently
used in industry and academia. This allows a direct assessment
of the most important baseline fuzzers in the ecosystem and
ensures that our results can be generalized across fuzzers.

Our preliminary experiments are restricted to three of the
23 FuzzBench benchmarks (Bloaty, HarfBuzz, and SQLite).
We will extend this to the full benchmark suite. We selected
HarfBuzz and SQLite because they were the motivating ex-
amples (cf. Section I-A), and Bloaty because it is one of the
largest FuzzBench targets in terms of lines of code.

C. Preliminary Evaluation Setup

We conducted our preliminary experiments on two iden-
tical machines with 2,048 GiB of DDR5 RAM and two
AMD EPYC 9754 CPUs with 128 physical cores running at
2.25 GHz each, that is, 256 physical cores total per server. We
used Debian 12.18 and Docker version 29.0.4. To guarantee
exclusive access to a dedicated physical core with a consistent
CPU frequency to each fuzzer throughout our experiments, we
disable hyperthreading (no logical cores), Turbo Mode, and
dynamic frequency scaling.

FuzzBench pins each fuzzing instance to a dedicated physi-
cal core, preventing them from competing for CPU resources.
Per server, we use 230 cores for fuzzing and 15 for coverage
measurements, leaving 11 cores idle. This avoids performance
degradation due to system or FuzzBench orchestration needs.

We use the benchmarks and fuzzers from revision 2a2ca6a
of FuzzBench. For Section IV-E, we extend the exact LLVM
version used by that revision of FuzzBench (bf7f8d6 with the
appropriate FuzzIntrospector patches) to ensure that only our
changes introduce differences to the baseline.

D. @ Snapshotting

In Section III-A, we identified two possible issues in how
FuzzBench collects and processes snapshots. We compare
the coverage obtained by the baseline with the results when
excluding non-testcase files from the snapshots. Generally, the
format of metadata files is unlikely to be similar to the format
parsed by the fuzzer target (in our preliminary evaluation, the
metadata files did not contribute additional coverage), but this
ultimately depends on the fuzzer and benchmark combination.

More significant is the impact of residual state in the
target. We compare three distinct scenarios: First, we consider
FuzzBench’s default behavior (residual state between stored
test cases). Then, we perform a fully stateless evaluation, in
which the coverage binary is restarted for each input.

The final scenario is designed to match and reconstruct the
original execution context as closely as possible. For this,
we will modify the fuzzer to record all inputs to and log
every restart of targetg,,,. We will account for the performance
overhead of this modification by running the modified fuzzer
not for a fixed amount of time, but for the same number
of test case executions as the baseline, unmodified fuzzer.
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During the evaluation phase, we will supply the original
test cases to target.,, in the exact order in which they were
supplied to targety,,,. Setting aside any non-determinism in
the benchmark itself, this reconstructs the original state of
targety,,, in target..,. To guarantee a fair comparison, we will
only accumulate the coverage of those test cases that would
also have been stored to disk by the unmodified fuzzer.

Our preliminary experiments compare the baseline to a
stateless evaluation. Figure 2 shows the results of this experi-
ment for HarfBuzz. It is clear that the same corpus processed
with FuzzBench’s default stateful mechanism () can report
very different coverage than if the test cases are reevaluated
without residual state (O). We suspect that the impact of
restoring the “correct” state that originally made the test case
relevant to the fuzzer will be even larger than the residual state
introduced by FuzzBench’s current evaluation.

E. @ Profiling Instrumentation

To evaluate the impact of miscomputations in Clang’s
instrumentation due to race conditions, crashes, and the use
of setjmp or longjmp, we propose comparing three different
instrumentation methods.

As the baseline, we use Clang’s default frontend instrumen-
tation, as it is used in FuzzBench today. Then, we force LLVM
to emit atomic counter increments instead, which specifically
eliminates race conditions but not any of the other issues.
Finally, we modify Clang to insert counters for all branches
instead of deriving branch counts from other counters. This
introduces some slight overhead, but eliminates the possibility
of miscomputations entirely.

Unfortunately, while the SQLite example from Section I-A
is easy to reproduce, the overall impact is masked by non-
determinism in the target (it is reachable by design, e.g.,
via SELECT random()). For Bloaty, the only target in our
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Figure 3: Branch coverage of different fuzzers on Bloaty
with O and without O keeping coverage upon encountering a
crashing input.

Bloaty HarfBuzz
Fuzzer Summary All Summary All
76 184 total 83580 total 17228 total 32658 total
AFL++  6358.5 (8.35%) 6920.5 (8.28%) 10920  (63.39%) 21044  (64.44%)
honggfuzz 5716.5 (7.50%) 6219 (7.44%) 9192.5 (53.36%) 17652  (54.05%)

LibAFL
libFuzzer

6318.5 (8.29%) 6892.5 (8.25%) 11073
5883.5 (7.72%) 6430 (7.69%) 10616

(64.27%) 21042.5 (64.43%)
(61.62%) 20101.5 (61.55%)

Table I: Evaluating all instantiations of a template individu-
ally instead of summarizing them results in different relative
coverage for Bloaty and HarfBuzz. For HarfBuzz the effect
even leads to a rank change between AFL++ and LibAFL. We
report median results of 10 trials. The best performing fuzzer
according to the metric in the column is highlighted.

preliminary experiments where fuzzers found crashes that
might affect the coverage, the results show that the non-
computing instrumentation consistently scores slightly lower
than the default. This matches our expectations: It is easier
for the default instrumentation to toggle a branch from zero
to nonzero than vice-versa, so removing miscomputations
should generally reduce the observed branch count. However,
the differences we observed require additional validation and
analysis to attribute them to a specific cause.

F. ® Retention of Counters

To reiterate the importance of correctly handling crashes
and timeouts in the corpus, we compare the baseline results
with those obtained after reverting the libFuzzer patch that
FuzzBench uses to make its target.,, resistant to crashes.

Figure 3 illustrates the results of our preliminary experiment
on Bloaty. While honggfuzz (2 crashing inputs across 10 trials)
is barely affected, LibAFL (409 crashing inputs across 10
trials) loses significantly more coverage.

G. @ From Raw Counters to Code Coverage

Our qualitative analysis (cf. Section III-D) revealed that hash
mismatches can occur between the coverage evaluation binary
and the coverage profiles within an evaluation campaign. The
root cause of this is unknown; our research suggests that
function entries with the correct hash are generated during
compilation but discarded, and that retaining them allows
evaluating the coverage obtained on these functions.

Systematically evaluating the impact will likely require an
additional patch to Clang or LLVM, but manual investigation
of the profdata files from our preliminary experiments on
Bloaty shows that these functions are indeed covered (so
FuzzBench underreports the branch coverage), but by all
fuzzers on all branches, that is, it affects all fuzzers equally.

In our experiments, we want to further investigate the root
cause of this issue and also quantify its impact by comparing
the current instrumentation (baseline) to one compiled with
the fix in place (no hash mismatches).

Similarly, we want to further investigate and ultimately fix
the root cause behind the missing expansion regions identified
earlier. Given a fix, we will perform a similar evaluation to
quantify the impact of this issue.

H. ® From Coverage Data to FuzzBench Reports

The total coverage values reported by 11vm-cov summarize
all instantiations of templated functions. We want to quantify
how many of these individual instantiations are actually cov-
ered by fuzzers. To do so, we directly evaluate the branches
of each function, including all instantiations, and compare this
detailed count to the default summarized coverage.

Our preliminary results indicate that, for the C++ projects
Bloaty and HarfBuzz, there is a significant gap between the
number of branches available for evaluation and those reported
by the summary. When examining instantiations individually,
HarfBuzz reports almost 90% more branches, and the top-
ranked fuzzer (by the median of all 10 trials) switches from
LibAFL to AFL++. Table I shows these results in more detail.

Additionally, FuzzBench’s notion of a “unique” branch dis-
agrees with LLVM’s definition of covered branches. Therefore,
we will compare the unique branch count as currently reported
by FuzzBench to an adapted version that considers both true
and false paths of a conditional branch individually (two-
sided unique branches). Figure 4 shows the results across all
10 trials. Again, we observe significant differences between
both variants. Particularly noteworthy is the set of branches
in HarfBuzz that honggfuzz covered but libFuzzer did not:
FuzzBench would report no improvement at all, but the raw
coverage data reveals that there are 12 additional branches.

1. Overall Impact

Finally, after evaluating each issue in isolation, we will
compare the overall impact of all fixes together against a plain
baseline run. This way, we can assess the combined impact
of all discovered issues. We will also compare these results to
those obtained using a new Clang version, which incorporates
patches for other bugs fixed in the meantime.
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To assess the real-world impact of our findings (RQ 3),
we will conduct a review of existing evaluations. With data
from literature, we can identify cases where the inconsistencies
introduced by the coverage evaluation could have affected the
ranking of the individual fuzzers, and which evaluations have
a margin that is sufficiently large to not be affected.

V. RELATED WORK

a) Measured Coverage vs. Actual Coverage: Current
code coverage evaluations are performed on the test cases
a fuzzer has kept for further mutation or deemed otherwise
interesting, for instance, because it crashed the target. However,
Lipp et al. [10] have shown in a small study that the shortcom-
ings of AFL’s coverage instrumentation lead it to discard inputs
that account for up to 9% of the basic blocks covered during a
campaign. This means that coverage evaluations based on the
fuzzer’s corpus underestimated the actually achieved coverage
in their experiment. Our work focuses on a different source of
error, namely the utilized coverage collection framework.

b) Scrutinizing Coverage: Previously, members of the
software engineering community have scrutinized the correct-
ness of code coverage tooling. Yang et al. [20] proposed
metamorphic testing to find bugs in 1lvm-cov and gcov
by mutating programs and utilizing metamorphic relations
between the coverage results of the original and the mutated

version. In a different work, they proposed to generate random
programs using CSmith [19] and then use differential testing
to find disagreements between different coverage tools [22].
Decov [21] is another approach that does not rely on the
output of the code coverage tooling but instead cross-validates
it with debugging data. All prior work tests either on syn-
thetic or deterministic programs from the GCC compiler test
suite. While this proved successful in discovering bugs in the
coverage instrumentation and tooling itself, the setup is very
different from FuzzBench, where we collect coverage on large,
complex, real-world programs with many different inputs.

DebCovDiff [23] closes the gap between simple programs
and real-world software by testing the coverage collection on
Debian packages. They inspect differences between 11vm-cov
and gcov to find bugs in them. While these tests are successful
for the purpose of uncovering discrepancies between the
coverage tools, they cannot uncover issues with the evaluations
of fuzzing campaigns, as they do not consider circumstances
like crashes, timeouts and a large number of inputs that make
triggering a data race more likely.

VI. LoOKING AHEAD

In this registered report, we present the first comprehensive
analysis of the FuzzBench coverage collection pipeline and
propose an extensive evaluation plan to quantify the impact of
the issues we uncovered during our analysis.

Our investigation has shown that there is a clear need for
improvement in the current FuzzBench methodology. Nev-
ertheless, we strongly believe that standardized benchmarks
are the right direction for the fuzzing community. Through
scrutiny of such benchmarks, like the one we proposed in this
work, we can ultimately increase confidence in all research and
projects that use and depend on them for their evaluations.

Despite their flaws, we do believe that FuzzBench and
1lvm-cov remain the right approach and tools for the job.
Because their coverage collection technique is entirely agnostic
to the instrumentation used by the fuzzers themselves, this
independence guarantees that the evaluation metric does not
provide an unfair advantage to any particular fuzzer that might
share an instrumentation heritage with the measurement tool.

We will make our code, and artifacts, publicly available at
softsec.link/fz26.cov. We commit to open science, and
hope our findings will help improve FuzzBench and contribute
to a more robust foundation for future fuzzing research.
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APPENDIX A
REVISION REQUIREMENTS

The reviewers encourage the authors to address the follow-
ing points:

1y

2)

3)

4)

5)

6)

7

8)

Complete the proposed evaluation and repeat fuzzing
campaigns for at least 30 trials as recommended by Klees
et al. [8]. Report results using meaningful aggregate
statistics (e.g., mean and standard deviation), and include
appropriate statistical analyses (such as confidence in-
tervals and hypothesis testing) to better understand the
effects introduced by the identified issues.

In addition to 1lvm-cov, the authors should include
comparisons with gcov where feasible to help distinguish
tool-specific artifacts and strengthen the evaluation.

For issues such as the counter-to-coverage translation
discussed in Section IV-G the paper should either identify
the root cause or clearly outline risk-mitigation strategies
if a definitive fix cannot be found. The final version
should avoid leaving major issues inconclusive without
discussing such mitigations.

Make the answer to RQ 1 explicit. Reviewers also suggest
summarizing all identified sources of coverage inconsis-
tency in a table, ideally including references to supporting
evidence (e.g., bug reports, issues, or experiments) and
pointers to how each source is evaluated.

Evaluation methodology and setup should be more con-
cise, and include whether fuzzing is performed in parallel
or on the same machine, whether Docker is used, and how
AFL is configured.

The threats to validity section should discuss gener-
alisability and transferability for other benchmarking
frameworks.

Revise Figure 2 for clarity and precision, including clearer
labeling, captions, and alignment with the accompanying
text.

Revisit the coverage evaluation pipeline to assess whether
there are additional sources of inconsistency beyond
those already identified, and discuss any newly discovered
issues, if any.
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