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Abstract—Fuzzing is one of the most successful techniques to
test software and discover vulnerabilities. Due to its effectiveness
and ease of scaling, it is often done in parallel on hundreds
to thousands of CPU cores and improving fuzzers’ efficiency,
efficacy, and performance has become a major research area.
Typically focused on enhancing fuzzing itself, such as through
better input generation or optimizing instrumentation to execute
the program more frequently, the goal is to find more bugs or
flaws in less time. On the other hand, optimizing the performance
of the target program, which the fuzzer executes billions of times,
specifically for fuzzing has received little attention.

We introduce Pocoruzz, a novel approach to improving
fuzzing performance that is fuzzer-agnostic and target-agnostic.
We leverage the insight that the inputs used for future mu-
tations are known, to then use compiler-based profile-guided
optimization (PGO) to optimize the target program specifically
for these future inputs. By regularly creating new profiles based
on the next inputs, recompiling the target program with new
optimizations, and in-situ replacing the target in the fuzzing
process with its newly optimized version, Pocoruzz improves
fuzzing performance of the state-of-the-art fuzzer AFL++.

We provide preliminary results for Pocoruzz in different
realistic experimental setups, comparing it to AFL++ on four
software projects from the FuzzBench suite for 1-6 physical
CPU cores per fuzzer, to demonstrate Pocoruzz’s advan-
tages. Our preliminary results show that our approach has
the potential to improve fuzzing throughput, despite incurring
additional optimization and recompilation costs. Pocoruzz, as a
Jfuzzer-target-agnostic approach, is a significant departure from
traditional improvements in fuzzing, which are fuzzer-specific
and/or target-specific, providing the opportunity for new, general
performance improvements for large-scale, extended fuzzing.

To encourage adoption and reproducibility of our research, we
will make Pocoruzz publicly available as open source before or
with the publication of the extended paper.

I. INTRODUCTION

Fuzzing has become a major, if not the main, approach for
vulnerability discovery, after showing a remarkable efficacy in
uncovering bugs. Most modern fuzzers are coverage-guided,
using greybox analyses to navigate the target program’s code
coverage space ‘“intelligently,” often based on AFL [15] or
AFL++ [9]. They iteratively refine their input generation to
increase code coverage. Recent work further improves fuzzing,
for example, by combining it with symbolic execution [28],
taint analysis [23], or machine learning [26].
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The real-world impact of fuzzing has been profound and it
has been widely adopted by practitioners. Large-scale fuzzing
has become common, often utilizing vast computational re-
sources that would sit idle otherwise. A prime example is
OSS-Fuzz, an initiative by Google for fuzzing open source
software, which uses hundreds of thousands of processor
cores [21]. It supports the simultaneous, continuous fuzzing
of over 1,300 open source projects, allocating an average of
over 80 cores per project to fuzzing. The true scale of fuzzing
in industry almost certainly extends far beyond the known
open source initiatives like OSS-Fuzz, with major companies
investing heavily in private fuzzing infrastructure [16, 18].
Already in 2019, Google’s infrastructure for fuzzing only
Google products used more than 25,000 cores [2]. Microsoft
is also fuzzing its products extensively [10].

Given the large scale and resource-intensive nature of
fuzzing, its performance and efficacy has become a focus of
research. Improving performance by increasing the number of
target executions per second directly implies a higher chance
of discovering bugs, because more inputs are tested in the same
amount of time. Prior work has largely focused on improving
or introducing fuzzer components, like snapshot-based [1, 25,
30] or persistent-mode [9] fuzzing. Meanwhile, optimizing the
performance of the target programs specifically for fuzzing
has only received little attention [20]. However, optimizing
the target presents a unique opportunity to improve efficiency,
as the programs are executed for long periods of time and
often tens of thousands of times per second on every single
processor core. Nagy et al. [20] proposed the removal of
unnecessary instrumentation from the target, and have shown
the potential benefits of optimizing the target instead of the
fuzzer, but it remains an open research question if and how we
can comprehensively optimize a target specifically for fuzzing.

In this paper, we introduce Pocoruzz, a novel approach
to improve fuzzing performance that is both fuzzer-agnostic
and target-agnostic. It leverages the insight that, in fuzzing,
the future inputs are mutations of known inputs, and they
likely exercise the same code paths. By creating corresponding
program profiles, Pocoruzz can use profile-guided compiler
optimizations (PGO) to optimize the target specifically for the
future inputs, and improve fuzzing performance independent
of the fuzzer and agnostic to the target.

Since the input seeds change over time, for example, after
discovering new code coverage or marking other inputs as
more interesting for the future, Pocoruzz regularly needs to
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create new profiles, recompile the target with new optimiza-
tions, and in situ replace it with its newly optimized version
without requiring costly fuzzer restarts.

Fundamentally, Pocoruzz is a significant departure from
traditional fuzzer optimizations, and offers the potential for
substantial performance gains in large-scale, extended fuzzing.
We make the following contributions:

. We introduce Pocoruzz, a fuzzer-agnostic and target-
agnostic approach to improve fuzzing performance, which
leverages the insight that the seeds to generate future
inputs are known, allowing us to optimize the target via
profile-guided optimizations (PGO).

- We evaluate Pocoruzz in various experimental settings
that reflect smaller, real-world fuzzing efforts, ranging
1-6 physical CPU cores per fuzzer, and compare it to the
state-of-the-art fuzzer AFL++ on four real-world targets.

. We provide preliminary evidence that PoGcoruzz can
indeed improve fuzzing performance over AFL++ by up
to 3.7% median (up to 29.7% max), and that, even at
frequent recompilation intervals, Pocoruzz’s improved
performance amortizes its recompilation costs.

II. BACKGROUND
A. Profile-Guided Optimization

Modern, optimizing compilers rely on a number of analyses
and heuristics to make decisions on which transformations
to perform. Estimates of how often parts of the code will
be executed influence function inlining, code motion within
functions, hot-cold-splitting, loop unrolling, and other opti-
mizations. In particular, compilers will aggressively optimize
code for speed that they expect to be executed often (hot path),
while trading speed for size in rarely executed, cold code.

While these estimates can sometimes be easy to obtain
statically (e.g., for fixed iteration count loops), compilers are
generally unable to reason about how exactly the program will
be used in practice. For code paths that heavily depend on the
input data, such as file format parsers, optimization decisions
may be suboptimal or even harmful to performance if the
compiler’s estimate is too far removed from real-world inputs.

Profile-guided optimization (PGO) uses dynamically ob-
tained feedback (profile) to inform the compiler how often each
part of the code is executed, typically collected from real-world
workloads. In turn, the compiler can make better decisions
during optimization, which should lead to better performance.
Typically, the compiler inserts profiling instrumentation during
compilation, which records how often each instrumentation
point is executed [7]. This is similar to the coverage instru-
mentation used by fuzzers, but tracks exact execution counts
instead. To enable further optimizations, modern compilers can
also record additional information. For example, LLVM can
record value profiles that contain information on the sizes of
certain memory operations, like memcpy, which may benefit
from vectorization if they are large enough.

By collecting this data under realistic workloads, in real
deployments or with synthetic benchmarks, the profile will

be representative of the program’s ‘typical” use. It is then
recompiled, with the profile replacing the compiler’s original
estimates of execution frequencies, branch probabilities, etc.

Figure 1 shows a common PGO workflow: The compiler
instruments the program and compiles it using an initial
estimate of the hot path, which affects the optimizations made
during compilation (in Figure 1, we illustrate the impact on
basic block ordering). After profiling, the compiler knows the
actual, real execution frequencies and it can make (much) more
accurate optimization decisions.

Confusingly, profile-guided optimization is sometimes used
interchangeably with feedback-directed optimization (FDO).
In the context of LLVM however, PGO is typically used to
describe instrumentation-based methods, while FDO refers to
approaches in which execution frequencies are obtained by
sampling instead (e.g., AutoFDO [4]). Nowadays, PGO and
FDO are widely used to optimize large, real-world software,
like the Android operating system [4, 29] or the Chromium
browser [6]. PGO, FDO, and similar adaptive reoptimization
approaches are also common in language interpreters. For
example, JavaScript engines, such as V8, make runtime deci-
sions on whether to perform just-in-time compilation and how
aggressively to optimize based on runtime execution counts.
In dynamic binary translation, optimizing frequently executed
code can also lead to significant performance gains [13].
Further, individual optimizations can also be feedback-driven
(e.g., using observed type frequencies to optimize dynamically
typed code). Of course, generally, the performance gains for
compiled code will be less than when deciding whether to
compile at all, but can still be considerable.

III. Pocoruzz

PocGoruzz is a new fuzzer-agnostic and target-agnostic
approach to improve fuzzing performance by optimizing the
target program for its future concrete inputs. It extends an
existing fuzzer, like AFL++ [9], with a recompilation stage
that derives PGO data from the current inputs and uses it to
reoptimize the target, shown in Figure 2. Since the nature of
the inputs change over time, we need to regularly reoptimize.
In the following, we describe the design of PoGoruzz.

A. Input Selection

Generally, a fuzzer decides dynamically which queue entries
to mutate, and how many new test cases to generate from an
input. This decision is typically based on a power schedule [3].
We use this energy metric to determine which entries will be
mutated and passed to the target. We then optimize the target
program so that it executes these test cases especially quickly,
with the idea that this should speed up the fuzzing process by
increasing the number of target executions per second.

We scale proportionally with the number of new test cases
that will be generated from each queue entry by the fuzzer.
Since the fuzzer will not mutate test cases with a low score
to create a significant number of new inputs, we skip low-
energy queue entries for our reoptimization using a simple
threshold. In turn, we can avoid processing the entire input
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Figure 1: Overview of the profile-guided optimization (PGO) workflow. Here, we illustrate
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Figure 2: High-level architecture of Pocoruzz.

queue, which may take prohibitively long. Instead, we focus on
the subset of high-energy inputs that will yield the majority of
new mutations. While the energy of a particular test case will
decay over time, the nature of the test cases generated during
fuzzing generally changes slowly. Moreover, only when there
is a significant change in coverage (and therefore at least one
new, interesting, high-energy test case), or when the fuzzer
has had sufficient time to explore high-energy inputs does it
become useful to reoptimize the target. Thus, the time between
reoptimizations provides an opportunity to exploit the better
performance and amortize the recompilation cost.

B. Profile Generation

After we select the high-energy inputs that will be used to
test the target, we derive PGO profiles for these inputs using
a separately instrumented target binary, and we then use the
merged profile to reoptimize the target.

In our prototype of Pocoruzz, we use a variant of LLVM’s
IR-level PGO instrumentation, modified to scale with the test
case’s energy level, to derive profiles for the high-energy
inputs. Because our profiles are compatible with LLVM, we
can reuse existing compiler infrastructure to optimize during
recompilation. This allows Pocoruzz to be readily integrated

with any fuzzer and target that can use LLVM for compila-
tion, without the need for target-specific modifications. With
minimal engineering effort, Pocoruzz can be also be ported
to other compilers with PGO support.

We want to add our PGO instrumentation late in the
compilation process, so that our PGO binary is as close to
the fuzzer’s target binary as possible. To ensure this, we use
LLVM’s IR-based PGO instrumentation instead of its front-end
instrumentation (which more accurately reflects the source-
code level). To ensure that our generated profiles match the
fuzzer’s instrumented binary as closely as possible, we keep
the build pipeline constant between recompilations by using
the same configuration used to compile the target for fuzzing.
Fortunately, we can avoid faulty estimates: LLVM’s PGO im-
plementation is inherently fault-tolerant, because it overrides
compiler estimates with PGO data only for functions that did
not structurally change (according to a hash of the control flow
graph) between instrumentation and reoptimization.!

We further adapt concepts from fuzzer design to make
Pogoruzz’s profile generation process more efficient. Instead
of manually invoking the profiling binary for every high-

IThe compiler produces warnings about functions with such structural
changes. We did not encounter any such warnings during our evaluation.



energy test case, we use a fork server (derived from AFL++’s
fork server instrumentation) to efficiently evaluate each input.
After a test case finishes, we accumulate the execution counts
for every instrumented edge, which implies that we cannot
naively use post-processing to scale the counts by each input’s
individual weight. Instead, to avoid having to repeatedly eval-
uate an input for proper weighting, we use a custom compiler
pass to modify the profiling instrumentation:

1) We locate every program point at which LLVM inserted
profiling instrumentation. We do this by inspecting the
LLVM intermediate representation (IR) and searching for
calls to the 1lvm.instrprof.* intrinsics. This must be
done immediately after they are inserted, because the
default LLVM optimization pipelines will lower these
intrinsics to normal IR code in the next few passes.

2) We replace all 1lvm.instrprof.increment calls with
1lvm.instrprof.increment_step calls. The latter in-
trinsic is a stepped variant of the former that lets us
specify by how much the counter should be incremented.

3) We insert new code to load the weight of the current test
case before calls to 1lvm.instrprof.increment_step.
We then multiply the old increment by our weight (i.e.,
the new increment is the weight for old increments by 1
and the old value multiplied by the weight otherwise).

C. Recompilation and Replacement

Next, we use our profile to recompile and reoptimize the
target, and then replace the target in situ in the fuzzing process.

To enable recompilation, Pocoruzz adds a custom recom-
pilation stage to the fuzzer that triggers on a configurable
timer. For our preliminary evaluation, we recompile every
hour. We decide to recompile every hour because it balances
the length of a typical fuzzing campaign and how long the top
queue entries are being fuzzed with the typical build time of
a target (approximately a few minutes). Other recompilation
intervals, like 2—6 hours, but also recompilation intervals that
are dynamic or tailored to a target, might allow for larger
performance gains and should be investigated.

Over time, high energy inputs become less important be-
cause they were executed sufficiently often. However, we also
want to avoid recompiling too frequently, as it incurs additional
cost, which we might not be able to recoup. For example,
if recompilation on a single core takes 2 minutes and we
recompile every hour, then we fuzz only for 58 minutes. If
our optimized target does not reach (on average) 3.45% more
executions per second, we cannot amortize our recompilation
cost. Naturally, with more CPU cores, our gains scale and it
becomes easier to recoup this cost, which makes PoGgoruzz
particularly well-suited for large-scale, real-world fuzzing.

When Pocoruzz triggers recompilation, we recompile the
fuzzer target from scratch using the same build process and
configuration as before, but we now also use our profile for op-
timization. We utilize one fuzzing process on one of the CPU
cores for recompilation and stop fuzzing on it, while fuzzing
processes on all other cores continue fuzzing the current target

binary until we compiled the reoptimized version. Once we
compiled the new version, we replace the target binary in situ,
and the instance of the fuzzer responsible for recompilation
signals all other fuzzing processes to continue fuzzing with the
recompiled target. This means that these processes will start
fuzzing the reoptimized target binary with minimal overhead.

IV. PRELIMINARY EvALUATION

We focus our preliminary evaluation of Pocoruzz on ex-
ecutions per second and compare against AFL++ v4.32c,
specifically afl-clang-1to, which Pocoruzz is based on. For
our preliminary investigation, we study a subset of four targets
from FuzzBench [17]. We selected these four targets based on
two criteria likely affecting Pocoruzz the most, namely their
executions per second and their input queue size:

« libxml2 (1ibxm12_xml in FuzzBench) is a relatively slow
target (in observed executions per second), and produces
a large queue that may need to be evaluated for profiling.

« libxslt (libxslt_xpath in FuzzBench) also produces a
large queue, but executes significantly faster than libxml2.

. systemd (systemd_fuzz-link-parser) is another slow
target, but only produces a small number of queue entries.

« zlib (z1lib_z1lib_uncompress_fuzzer) has the highest
execution speed of the four, but also only produces a small
number of queue entries.

We compare Pocoruzz and AFL++ in multiple configurations,
ranging 1-6 physical CPU cores per fuzzer, to determine when
the speedup achieved by reoptimization outweighs the cost of
the recompilation, that is, to investigate the effect of scaling.
For statistical rigor, we repeat each experiment 5 times and
report median, standard deviation, and maximum.

We performed our preliminary experiments on two Dell
R7625 servers with two AMD EPYC 9754 CPUs each (with
128 physical cores per CPU, i.e., 256 physical cores per server
and 512 physical cores total) and 2048 GiB of DDRS system
memory each. Both servers ran Debian 12. We assign targets
to servers, that is, we evaluate both fuzzers for two targets on
one server, and both fuzzers for the other two targets on the
other server. To minimize the impact of hardware behavior
and ensure that there is no unintended interference between
fuzzing trials, we disabled hyperthreading and any settings that
attempt to dynamically scale hardware performance at runtime.
This includes dynamic frequency scaling for the CPU (“Turbo
Boost”) and for the interconnects (e.g. AMD’s “Algorithm
Performance Boost”). We used only 240 of 256 physical
cores per server for fuzzing, with the remaining 16 cores
remaining available for the OS and orchestration. We pinned
each fuzzing processes to a unique physical core via AFL++’s
builtin CPU affinity settings, and we restrict the individual
trials to the cores allocated to their fuzzing processes using
cpuset cgroups and numactl. Further, to eliminate the impact
of disk contention, we stored the fuzzer’s input queue and
experiment results entirely in memory via tmpfs, with the
fuzzers and target binaries being stored on NVMe SSDs.



A. Results

Figure 3 shows the number executions per second of Poco-
rFuzz and baseline AFL++ over 24 hours and Table I reports
the total executions after 24 hours.

As expected, reoptimization imposes a greater performance
penalty when only few cores are used for fuzzing. After all,
one core is occupied with compilation and cannot be used
for fuzzing during that time. This behavior is particularly
visible in the results for libxslt (Figure 3b) and systemd
(Figure 3c), where single core execution speed almost drops
to zero for short periods. For example, recompiling systemd
during a single-core trial leads to a loss of over 10% of fuzzing
throughput (median 8.5 x 10° executions instead of 9.5 x 10°
executions on baseline AFL++). This corresponds closely to
the portion of total time taken up by the recompilation process.

As the number of cores increases, the reoptimization cost
becomes less significant and amortizes quickly. Some targets
are more sensitively to reoptimization and show the per-
formance gains of Pocoruzz with fewer cores than others.
Starting from around three to four cores, PoGoruzz con-
sistently outperforms AFL++ on libxml2 and libxslt by up
to 3.7% in the median. This trend continues if we perform
an additional experiment using 8 cores (see Figure 4). On
systemd, which has very few executions per second in general
(=100 executions per second per core), the performance of
AFL++ and Pocoruzz is within the margin of error. With
zlib, median execution speeds are generally below or equal to
the baseline until we perform an additional experiment with
8 cores, where we see clear performance gains over AFL++
(see Table I and Figure 5). This naturally raises the question
of how well Pocoruzz’s gains scale with more physical cores,
which we will investigate (see Section V-B).

V. DiscussioNn
A. Possible Limitations and Threats to Validity

In this work, we did not examine whether recompilation
may introduce changes in the mapping between code locations
and the fuzzer’s coverage map. That is, whether the locations
of edges in the coverage map before and after recompilation
are the same. The primary reasons for such a change to
occur are changes to the program structure caused by different
optimization decisions, and changes introduced by the in-
strumentation logic. Thankfully, changes to program structure
that are relevant to the fuzzing instrumentation are very rare
and would mainly be caused by inlining decisions made
early in the compilation pipeline. Most other optimization
decisions that PGO-derived data informs are made after the
fuzzing instrumentation is inserted, especially so if we use
IR-based PGO instrumentation. This includes machine-specific
instruction selection and code positioning (e.g. basic block
ordering). Given that Pocoruzz leverages LLVM’s IR-based
PGO instrumentation and its fault-tolerance, we do not expect
such issues to occur for us and we did not observe any during
our preliminary analysis. However, such issues might occur
with other compilers’ PGO approaches.

Table I: Total executions per target per fuzzer after
24 hours, in million. The largest median number of executions
per target and core configuration is bolded. Particularly notable
are the results for libxslt, for which the median number of
executions of Pocoruzz with 8 cores exceeds the performance
of baseline AFL++ by 50, and zlib with 8 cores, for which
PoGgoruzz achieves 165 million more executions than the
baseline in 24 hours (20.6 million executions per core).

Baseline AFL++ PoGoruzz
Target Cores Median o Max  Median o Max
1 100.7 29.9 120.0 104.0 28.2 137.2
2 192.8 59.6 318.8 214.4 78.6 334.6
libxml2 3 304.5 88.3 439.7 382.9 62.9 431.7
4 403.1 80.4 437.3 413.0 95.1 567.0
6 7622 213.0 975.7 793.2 1247 1001.0
1 360.6 10.2 368.4 362.3 9.5 372.5
2 731.6 17.0 759.3 707.4 45.6 764.5
libxslt 3 1121.9 13.9 11372 1149.6 19.1 11787
4 1476.8 19.9  1498.6 1520.1 239 15477
6 2260.7 33.3 22782 2290.0 37.3  2319.1
8 2985.1 37.3 30209 3096.8 149  3100.6
1 9.5 0.1 9.7 8.5 0.1 8.6
2 19.9 0.6 21.0 19.1 0.6 20.0
systemd 3 29.8 0.8 30.7 29.9 0.7 30.6
4 40.8 2.0 434 38.8 0.7 40.2
6 614 1.4 62.2 60.9 24 63.8
1 631.8 129.3 746.9 670.7 21.8 707.0
2 1540.9 259 15924 1495.9 20.1 15282
ib 3 2312.8 46.0 23424 2330.2 109.3 23758
4 3160.1 169  3192.2 3137.8 8.6 31452
6 4758.3 67.7 4898.8 4694.2 51.8 4771.6
8 6337.6 623  6377.1 6407.2 1357 65425

Another potential source for changes to the coverage map-
ping that could cause an issue is the fuzzer’s instrumentation
pass itself. This would require the instrumentation to take
the optimization metadata provided by PGO into account
though. AFL++ does not do this in any of its plugin-based
instrumentations, including afl-clang-1to. In fact, it is very
difficult to use such sophisticated approaches to selecting
instrumentation sites in a fuzzer. Thus, we do not expect there
to be any changes to the fuzzer’s coverage mapping.

Generally, other instrumentation methods for PGO might
produce different results. We opted for LLVM’s IR-based PGO
instrumentation because it is widely used and we expect front-
end instrumentation to perform worse, but it is possible that
other options or compilers may produce profiles of higher
fidelty, leading to even greater improvements. Of particular
interest are sample-based profiling methods like AutoFDO [4]
that could be used throughout the fuzzing campaign (though
we do not need to observe real-world inputs in the first place,
as we can know the nature of the inputs the fuzzer will
create), and LLVM’s context-sensitive PGO instrumentation
(CSIR), though its context tracking does not lend itself well
to weighting during reinstrumentation (see Section III-B).

To balance recompilation cost with expected changes to
the input queue over time and the performance gain of PGO,
we recompile the target once per hour. However, recompiling
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less frequently, target-dependent, or dynamically based on how
much the set of high-energy input test cases differs from the
input set previously used for reoptimization may yield even
better improvements. We will investigate other recompilation
intervals in our follow-up experiments (see Section V-B).
Finally, as is often the case with compiler optimizations,
target-specific variations can lead to differences in the effec-
tiveness of profile-guided optimization. To provide an initial
assessment whether Pocoruzz might be useful for real-world
fuzzing, we evaluated it on four programs that exhibit dis-
tincly different behavior in execution speed and input queue
size, the two main factors influencing Pocoruzz’s efficacy.
Nevertheless, to ensure the generalizability of our findings, we
will evaluate Pocoruzz on a broader range of programs (see
Section V-B). Similarly, Pocoruzz’s scalability and benefits
for larger-scale fuzzing should be studied, on the scale of
dozens to hundreds of cores per target (e.g., for OSS-Fuzz).

B. Proposed Experiments

For our preliminary evaluation, we used a recompile interval
of 1 hour. This fixed interval is likely not optimal for all
targets, but it does allow us to clearly show the potential
of Pocoruzz and that the additional cost of recompiling
the target can be recouped even at frequent intervals and
when performing likely unnecessary recompilations. At less
frequent recompilation intervals, for example, every 2 hours,
Pocoruzz’s recompilation overhead would reduce, but the
target’s executions per second may degrade if the input set
changes substantially, that is, if the inputs do not exercise
the optimized target’s hot code paths anymore. Dynamically
determining when recompilation should occur, per target, will
almost certainly lower Pocoruzz’s recompilation overhead,
while also retaining most or all of the performance gains
that Pocoruzz contributes, which is a question that we will
investigate. In particular, we will:

. We will evaluate different recompile intervals of at least
2, 4, and 8 hours for fuzzing campaigns of 48 hours.

- We will explore how one can use heuristics to skip regular
recompilation intervals if the queue has not changed sub-
stantially from the last recompilation, or how one could
dynamically determine the best time for recompilation.

So far, we evaluated PoGgoFuzz in experimental settings that
reflect how fuzzers are run for smaller scale fuzzing cam-
paigns. Already, we observed performance gains over baseline
AFL++ at 4-8 cores per fuzzer. However, in practice, fuzzing
campaigns can span tens to hundreds to thousands of cores
per fuzzer. We expect the performance gains of Pocoruzz to
further increase, as fuzzing is perfectly parallel and the gains
should scale (almost) linearly. Moreover, while we have shown
that Pocoruzz increases performance for an example of each
of the four classes of fuzzing targets (cf. Section IV), that is,
slow or fast targets with small or large queues, the performance
characteristics of other targets of these classes or other classes
may differ. Therefore, we will extend our experiments and
confirm our preliminary hypotheses:

- We will allocate (many) more computational resources to
each fuzzer, up to (at least) 24 CPU cores per fuzzer trial.

- We will evaluate and compare Pocoruzz on all targets of
the FuzzBench benchmarking suite.

Further, for our preliminary analysis, we repeated all our
configurations of fuzzer, target, number of cores for 5 times
and report median, standard deviation, and maximum values.
We will extend our experiments and implement best practices
for fuzzing evaluations [24]:

« We will extend our fuzzing duration to (at least) 48 hours.
« We will run (at least) 10 trials per fuzzer configuration.

- We will perform robust statistical significance testing and
report the effect size.

Finally, to encourage adoption and reproducibility, we will
make PoGoruzz and related artifacts publicly available as open
source at softsec.link/fz26.pogofuzz.

C. Opportunities for Future Work

Pocoruzz improved fuzzing performance over the highly
optimized state-of-the-art fuzzer AFL++, but our approach is
fuzzer-agnostic: It does not modify or require any fuzzer com-
ponents. The performance improvements over other fuzzers,
like Honggfuzz [14], may differ. However, Pocoruzz does not
improve the performance of the fuzzer itself, but only that of
the target, which strongly suggests that the performance gains
would readily transfer to other fuzzers.

Our implementation of Pocoruzz is a proof of concept and
not highly optimized. Various improvements that have been
made to fuzzing and compiler infrastructure could be adopted
to our approach to improve the performance of PoGoruzz
itself, rather than that of the target. For example, it may be
possible to tune the performance of the recompilation step or
to cache parts of it before the PGO profile is loaded, similar
to AFL++’s forkserver, but adapted to the PGO process. We
refrained from these optimizations as the compilation process
takes a relatively small amount of time and we observed
that Pocoruzz’s overhead is amortized for few CPU cores
already. However, future work investigating the possible gains
on targets that have long compilation times, such as web
browsers or operating systems, may be worthwhile.

So far, we leverage compiler-based PGO to optimize the
target program, but other optimization techniques such as post-
link optimizations (PLO) that perform (static) binary rewriting,
like BOLT [22] or Propeller [27] could yield additional im-
provements. Both of them have shown promise in providing
additional performance improvements over PGO for large-
scale data-center binary programs, and they might allow for
additional performance improvements, but also at an additional
cost. While the resources to properly evaluate PLO’s potential
are beyond what is available to academic researchers, future
work should investigate the necessary scale at which the PLO
cost, in addition to PGO, can be amortized and when PLO can
improve fuzzing performance (e.g., at the scale of OSS-Fuzz).


https://softsec.link/fz26.pogofuzz

VI. RELATED WORK

Prior work related to Pocoruzz falls in two main re-
search areas: approaches to optimize fuzzer performance
(Section VI-A), and improvements and applications of profile-
guided optimization (Section VI-B).

A. Optimizing Fuzzing Performance

Fuzzing and improving its efficacy has received substantial
attention from the security and software engineering commu-
nities in recent years. A core focus has been on reaching more
code, that is, achieving higher code coverage, in the same time.

Closely related to Pocoruzz are approaches aiming to
reduce overhead. Zhang et al. [32] studied system-level opti-
mizations to accelerate fuzzing. They found that common fork
server and OS operations can slow down fuzzing significantly,
and propose replacing slow components with optimized ones
that avoid these costly interactions when possible. Pocoruzz
instead optimizes the target and does not require modifications
to the operating system or fuzzer, making it complementary.

Snapshot-based fuzzing eliminates the need to reinitialize
the target each time by recording the state at a program
point and later restoring it for each new input, which re-
duces overhead and increasing execution speed. For example,
Nyx [25] is a snapshot-based hypervisor fuzzer. Pocoruzz
is largely complementary to snapshot-based fuzzing, with
the caveat that it may be necessary to reset the snapshot
after recompilation. Considering that snapshot-based fuzzers
typically achieve higher executions per second speeds than
traditional fuzzers and we can prioritize reoptimizing code
after the snapshot, Pocoruzz’s benefits might be even larger.

Prior work has also aimed to identify and remove un-
necessary instrumentation to improve performance. Zhang
et al. [31] introduce ASan--, a “debloated” Address Sanitizer
(ASan) [11]. ASan is commonly used to instrument targets
to detect memory errors, but it incurs substantial runtime
overhead. ASan-- incurs up to 70% less overhead than ASan,
while still detecting most memory errors accurately. Similarly,
Nagy et al. introduce UnTracer [20], an approach that reduces
overhead by removing coverage instrumentation that serves
no purpose anymore after extended fuzzing and only retains
instrumentation that can still lead to new code coverage.
Pocoruzz is complementary to such approaches.

B. Profile-guided Optimizations

Profile-guided optimization (PGO), sometimes called
profile-directed feedback (PDF) or feedback-directed optimiza-
tion (FDO), is a compiler optimization that uses profiling
information gathered during program executions to inform
optimization decisions. It has proven particularly effective in
improving the performance of large-scale, complex software.
For example, PGO is used by Google Chrome [6], Mozilla
Firefox [19], Linux [8], and various databases.

Most PGO research tries to collect profiling information at
runtime in production at low overhead, focusing on sample-
based profiling approaches [4, 5]. These approaches struggle to
achieve the same performance gains as instrumentation-based

PGO due to the lower data resolution, sparking attempts to
increase fidelity. For example, He et al. propose CSSPGO,
a context-sensitive sampling-based approach using pseudo-
instrumentation to improve profile quality [12].

Other work focused on post-link optimizations (PLO), that
is, optimizations after conventional compiler optimizations.
BOLT by Panchenko et al. [22] performs PLO for large data-
center binaries at Facebook through static binary rewriting.
Shen et al. introduced Propeller [27], which is a relinking op-
timizer designed for warehouse-scale workloads. It addresses
the scaling challenges for traditional post-link optimizers for
large binaries and distributed build systems. Deployed at scale
at Google, Propeller improves on compiler-based PGO by
1.1%. Approaches like BOLT and Propeller can readily be
adapted to further optimize the fuzzing target, for example, by
adding a PLO step to Pocoruzz after the recompilation. It is
unknown though if the approaches’ performance improvements
also apply to fuzzing targets, which are typically much smaller
than the large data-center binaries that these approaches were
designed for (these binaries are often times 100MB and larger
monolithic binaries and code layout is an important factor).

VII. CoNCLUSION

We introduced Pocoruzz, a novel approach to enhancing
fuzzing performance that is both fuzzing and target inde-
pendent, by focusing on optimizing the performance of the
target rather than the fuzzer. Pocoruzz uses profile-guided
compiler optimizations (PGO) to specifically tailor the target
to the inputs, leveraging the insight that the future inputs are
likely exercising similar code paths and that the inputs are
known a priori. This insight also eliminates the need to collect
profiles at runtime with significant overhead, allowing us to
reap PGO’s benefits for fuzzing at almost no additional cost.

Through our preliminary evaluation of Pocoruzz on four
real-world software projects from the FuzzBench benchmark-
ing suite and with varying different computational resources
(1-6 physical CPU cores per fuzzer), we have shown that
PoGoruzz can surpass the performance of the state-of-the-
art fuzzer AFL++ by up to 4%. It achieves this despite
the additional overhead of regular recompilation, suggesting
that any additional scaling to more CPU cores, as would be
typical for large fuzzing campaigns with hundreds to thousands
of cores, would further increase the performance gains of
PocGoruzz. Finally, by focusing on optimizing the target rather
than the fuzzer, we have shown that there are other, new
opportunities to improve fuzzing.
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APPENDIX A
REVISION REQUIREMENTS

The reviewers request that the authors address the following
points for the full paper:

1) The performance improvement should be evaluated
against additional fuzzers, e.g. Honggfuzz and LibAFL.

2) The proposed approach should also be compared with
related methods, including prior PGO-assisted fuzzing by
Zhang et al. [32] and the Untracer technique by Nagy and
Hicks [20], among others.
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